In order to investigate hyperspectral images, many techniques such as multivariate image analysis (MIA) or multivariate curve resolution-alternating least squares (MCR-ALS) can be applied. When focusing on the use of MCR-ALS, constraints are of the utmost importance for a correct resolution of the data into its individual contributions. In this article, a fuzzy clustering pattern recognition method (fuzzy C-means) is applied on experimental data in order to improve the results obtained within the MCR-ALS analysis. The big advantage of a fuzzy clustering technique over a hard clustering technique, such as k-means, is that the algorithm determines the probability of a pixel to be assigned to a component, indicating that a pixel can be part of multiple clusters (or components). This is, of course, an important property for dealing with data in which a lot of overlap between the components in the spatial direction occurs. This article deals briefly with the implementation of the constraint into the MCR-ALS algorithm and then shows the application of the constraint on an oil-in-water emulsion obtained by Raman spectroscopy, in which the different components can be decomposed in a clearer way and the interface between the oil and water bubbles becomes more visible.