Motor conversion disorder (CD) entails genuine disturbances in the subjective experience of patients who maintain they are unable to perform a motor function, despite lack of apparent neurological damage. Abilities by which individuals assess their own capacities during performance in a task are called metacognitive, and distinctive impairment of such abilities is observed in several disorders of self-awareness such as blindsight and anosognosia. In CD, previous research has focused on the recruitment of motor and emotional brain systems, generally linking symptoms to altered limbic-motor interactions; however, metacognitive function has not been studied to our knowledge. Here we tested ten CD patients and ten age-gender matched controls during a visually-guided motor paradigm, previously employed in healthy controls (HC), allowing us to probe for motor awareness and metacognition. Participants had to draw straight trajectories towards a visual target while, unbeknownst to them, deviations were occasionally introduced in the reaching trajectory seen on the screen. Participants then reported both awareness of deviations and confidence in their response. Activity in premotor and cingulate cortex distinguished between conscious and unconscious movement corrections in controls better than patients. Critically, whereas controls engaged the left superior precuneus and middle temporal region during confidence judgments, CD patients recruited bilateral parahippocampal and amygdalo-hippocampal regions instead. These results reveal that distinct brain regions subserve metacognitive monitoring for HC and CD, pointing to different mechanisms and sources of information used to monitor and form confidence judgments of motor performance. While brain systems involved in sensory-motor integration and vision are more engaged in controls, CD patients may preferentially rely on memory and contextual associative processing, possibly accounting for how affect and memories can imbue current motor experience in these patients.