2009
DOI: 10.1080/00029890.2009.11920965
|View full text |Cite
|
Sign up to set email alerts
|

Musical Actions of Dihedral Groups

Abstract: Abstract. The sequence of pitches which form a musical melody can be transposed or inverted. Since the 1970s, music theorists have modeled musical transposition and inversion in terms of an action of the dihedral group of order 24. More recently music theorists have found an intriguing second way that the dihedral group of order 24 acts on the set of major and minor triads. We illustrate both geometrically and algebraically how these two actions are dual. Both actions and their duality have been used to analyz… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
28
0
1

Year Published

2011
2011
2024
2024

Publication Types

Select...
7
2
1

Relationship

2
8

Authors

Journals

citations
Cited by 24 publications
(29 citation statements)
references
References 16 publications
0
28
0
1
Order By: Relevance
“…There are other generalizations of the classical Tonnetz, see for example [3,5,10] or [11]. The authors of these papers usually put more emphasis on combinatorial and geometric aspects of the musical theory and see mathematics primarily as a useful tool.…”
Section: Other Generalizations Of the Tonnetzmentioning
confidence: 99%
“…There are other generalizations of the classical Tonnetz, see for example [3,5,10] or [11]. The authors of these papers usually put more emphasis on combinatorial and geometric aspects of the musical theory and see mathematics primarily as a useful tool.…”
Section: Other Generalizations Of the Tonnetzmentioning
confidence: 99%
“…El enlace a una exposición divulgativa de los estudiantes de GSU acerca de los diferentes temas que se cubrieron, la cual fue ofrecida en una sesión del club de matemáticas de GSU en octubre de 2014, puede encontrarse en las referencias (Montiel, 2016).El curso consistió, primero, en una serie de clases magistrales y, segundo, en dos sesiones de trabajo en grupo sobre las diferentes temáticas cubiertas, más una sesión final de presentaciones. Los temas que se cubrieron incluyeron los ritmos Euclidianos, la regularidad máxima en términos de ritmo y melodía, el software Rubato Composer ® y su base teórica de la teoría de categorías (Milmeister, 2009), aspectos de teoría de grupos y las transformaciones neo -Riemannianas, en particular la dualidad entre el grupo T/I y el grupo PLR (Crans, Fiore & Satyendra, 2009;Agustín et al, 2012), el teorema del hexacordo y la combinatoria en la pieza Clapping Music de Steve Reich (Haack, 1991).…”
Section: Antecedentesunclassified
“…For instance, P (0, 4, 7) = (7, 3, 0), L(0, 4, 7) = (11,7,4), and R(0, 4, 7) = (4, 0, 9). These operations are sometimes called contextual inversions because the inversion in the definition depends on the input.…”
Section: 1mentioning
confidence: 99%