We describe an interesting relation between Lie 2-algebras, the Kac-Moody central extensions of loop groups, and the group String(n). A Lie 2-algebra is a categorified version of a Lie algebra where the Jacobi identity holds up to a natural isomorphism called the 'Jacobiator.' Similarly, a Lie 2-group is a categorified version of a Lie group. If G is a simply-connected compact simple Lie group, there is a 1-parameter family of Lie 2-algebras g k each having g as its Lie algebra of objects, but with a Jacobiator built from the canonical 3-form on G. There appears to be no Lie 2-group having g k as its Lie 2-algebra, except when k = 0. Here, however, we construct for integral k an infinite-dimensional Lie 2-group P k G whose Lie 2-algebra is equivalent to g k . The objects of P k G are based paths in G, while the automorphisms of any object form the level-k Kac-Moody central extension of the loop group ΩG. This 2-group is closely related to the kth power of the canonical gerbe over G. Its nerve gives a topological group |P k G| that is an extension of G by K(Z, 2). When k = ±1, |P k G| can also be obtained by killing the third homotopy group of G. Thus, when G = Spin(n), |P k G| is none other than String(n).
After a review of exotic statistics for point particles in 3d BF theory, and especially 3d quantum gravity, we show that string-like defects in 4d BF theory obey exotic statistics governed by the "loop braid group". This group has a set of generators that switch two strings just as one would normally switch point particles, but also a set of generators that switch two strings by passing one through the other. The first set generates a copy of the symmetric group, while the second generates a copy of the braid group. Thanks to recent work of Xiao-Song Lin, we can give a presentation of the whole loop braid group, which turns out to be isomorphic to the "braid permutation group" of Fenn, Rimányi, and Rourke. In the context of 4d BF theory, this group naturally acts on the moduli space of flat G-bundles on the complement of a collection of unlinked unknotted circles in R 3 . When G is unimodular, this gives a unitary representation of the loop braid group. We also discuss "quandle field theory", in which the gauge group G is replaced by a quandle.e-print archive: http://lanl.arXiv.org/abs/arXiv:gr-qc/0603085
Abstract. The sequence of pitches which form a musical melody can be transposed or inverted. Since the 1970s, music theorists have modeled musical transposition and inversion in terms of an action of the dihedral group of order 24. More recently music theorists have found an intriguing second way that the dihedral group of order 24 acts on the set of major and minor triads. We illustrate both geometrically and algebraically how these two actions are dual. Both actions and their duality have been used to analyze works of music as diverse as Hindemith and the Beatles.
Abstract. The sequence of pitches which form a musical melody can be transposed or inverted. Since the 1970s, music theorists have modeled musical transposition and inversion in terms of an action of the dihedral group of order 24. More recently music theorists have found an intriguing second way that the dihedral group of order 24 acts on the set of major and minor triads. We illustrate both geometrically and algebraically how these two actions are dual. Both actions and their duality have been used to analyze works of music as diverse as Hindemith and the Beatles.
If A is an abelian quandle and Q is a quandle, the hom set Hom(Q, A) of quandle homomorphisms from Q to A has a natural quandle structure. We exploit this fact to enhance the quandle counting invariant, providing an example of links with the same counting invariant values but distinguished by the hom quandle structure. We generalize the result to the case of biquandles, collect observations and results about abelian quandles and the hom quandle, and show that the category of abelian quandles is symmetric monoidal closed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.