The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly considered, the function of the NMJ is to transduce a nerve action potential into a muscle fiber action potential (MFAP). Efficient information transfer requires both cholinergic signaling, responsible for the generation of endplate potentials (EPPs), and excitation, the activation of postsynaptic voltage-gated sodium channels (Nav1.4) to trigger MFAPs. In contrast to the cholinergic apparatus, the signaling pathways that organize Nav1.4 and muscle fiber excitability are poorly characterized. Muscle-specific kinase (MuSK), in addition to its Ig1 domain-dependent role as an agrin-LRP4 receptor, is also a BMP co-receptor that binds BMPs via its Ig3 domain and shapes BMP-induced signaling and transcriptional output. Here we probed the function of the MuSK-BMP pathway at the NMJ using mice lacking the MuSK Ig3 domain (‘ΔIg3-MuSK’). Synapses formed normally in ΔIg3-MuSK animals, but the postsynaptic apparatus was fragmented from the first weeks of life. Anatomical denervation was not observed at any age examined. Moreover, spontaneous and nerve-evoked acetylcholine release, AChR density, and endplate currents were comparable to WT. However, trains of nerve-evoked MFAPs in ΔIg3-MuSK muscle were abnormal as revealed by increased jitter and blocking in single fiber electromyography. Further, nerve-evoked compound muscle action potentials (CMAPs), as well as twitch and tetanic muscle torque force production, were also diminished. Finally, Nav1.4 levels were reduced at ΔIg3-MuSK synapses but not at the extrajunctional sarcolemma, indicating that the observed excitability defects are the result of impaired localization of this voltage-gated ion channel at the NMJ. We propose that MuSK plays two distinct roles at the NMJ: as an agrin-LRP4 receptor necessary for establishing and maintaining cholinergic signaling, and as a BMP co-receptor required for maintaining proper Nav1.4 density, nerve-evoked muscle excitability and force production. The MuSK-BMP pathway thus emerges as a target for modulating excitability and functional innervation, which are defective in conditions such as congenital myasthenic syndromes and aging.Significance StatementThe neuromuscular junction (NMJ) is required for nerve-evoked muscle contraction and movement, and its function is compromised during aging and disease. Although the mechanisms underlying neurotransmitter release and cholinergic response at this synapse have been studied extensively, the machinery necessary for nerve-evoked muscle excitation are incompletely characterized. We show that MuSK (Muscle-specific kinase), in its role as a BMP co-receptor, regulates NMJ structure as well as the localization of the voltage-gated sodium channels necessary for full nerve-evoked muscle fiber excitation and force production. This novel function of MuSK is structurally and mechanistically distinct from its role in organizing cholinergic machinery. The MuSK-BMP pathway thus presents a new opportunity to understand mechanisms that may preserve or enhance neuromuscular excitability in the face of aging and disease.