The extensive application of per uoroalkyl and poly uoroalkyl substances (PFASs) causes their frequent detection in various environments. Nevertheless, the effects of PFASs exposure on environmental microorganisms still remain unknown. In current work, two typical PFASs, per uorooctanoic acid (PFOA) and per uorooctanesulfonic acid (PFOS), are selected to investigate their long-term effects on soil microbes. Microbial community structure and diversity were investigated by high-throughput sequencing and multiple statistical methods. Under 90-days of exposure, PFAS treatments increased the alphadiversity of soil microbial communities with PFOS treatment, followed by PFOA treatment. The long-term exposure of PFASs substantially changed the compositions of soil microbial communities. The most abundant phylum Proteobacteria decreased from 82.9% (without amended PFASs) to 62.1% (with PFOA treatment) and 77.8% (with PFOS treatment). As a comparison, the relative abundance of Bacteroidetes, Chloro exi, Acidobacteria, and Ignavibacteriae increased in the PFOA or PFOS groups. Comparative cooccurrence networks were constructed to investigate the biotic interactions in the two treatments. It was found that most taxonomy nodes in the PFOA and PFOS networks were associated with the genus Hydrogenophaga and Pseudoxanthomonas, respectively. The LEfSe analysis identi ed a set of core taxonomies (e.g., Azospirillum, Methyloversatilis, Ancylobacter, Hydrogenophaga, and Methylomonas) in the soil microbial communities and suggested their different preferences to PFAS exposures. Functional gene prediction suggested that the microbial metabolism processes, such as nucleotide transport and metabolism, cell motility, carbohydrate transport and metabolism, energy production and conversion, and secondary metabolites biosynthesis transport and catabolism, might be signi cantly inhibited under PFAS exposure, which may further affect soil ecological services.