Two-dimensional atomic crystals are extensively studied in recent years due to their exciting physics and device applications. However, a molecular counterpart, with scalable processability and competitive device performance, is still challenging. Here, we demonstrate that high-quality few-layer dioctylbenzothienobenzothiophene molecular crystals can be grown on graphene or boron nitride substrate via van der Waals epitaxy, with precisely controlled thickness down to monolayer, large-area single crystal, low process temperature and patterning capability. The crystalline layers are atomically smooth and effectively decoupled from the substrate due to weak van der Waals interactions, affording a pristine interface for high-performance organic transistors. As a result, monolayer dioctylbenzothienobenzothiophene molecular crystal field-effect transistors on boron nitride show record-high carrier mobility up to 10 cm 2 V À 1 s À 1 and aggressively scaled saturation voltage B1 V. Our work unveils an exciting new class of two-dimensional molecular materials for electronic and optoelectronic applications.
Ultrathin CdS nanosheets with a thickness of ~4 nm have been synthesized through an ultrasonic-induced aqueous exfoliation method involving lamellar CdS-DETA hybrid nanosheets as starting materials and L-cysteine as a stabilizing agent. The as-obtained CdS ultrathin nanosheets exhibit efficient photocatalytic activity and good stability for hydrogen production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.