The sixth pandemic of cholera and, presumably, the earlier pandemics were caused by the classical biotype of Vibrio cholerae O1, which was progressively replaced by the El Tor biotype representing the seventh cholera pandemic. Although the classical biotype of V. cholerae O1 is extinct, even in southern Bangladesh, the last of the niches where this biotype prevailed, we have identified new varieties of V. cholerae O1, of the El Tor biotype with attributes of the classical biotype, from hospitalized patients with acute diarrhea in Bangladesh. Twentyfour strains of V. cholerae O1 isolated between 1991 and 1994 from hospitalized patients with acute diarrhea in Matlab, a rural area of Bangladesh, were examined for the phenotypic and genotypic traits that distinguish the two biotypes of V. cholerae O1. Standard reference strains of V. cholerae O1 belonging to the classical and El Tor biotypes were used as controls in all of the tests. The phenotypic traits commonly used to distinguish between the El Tor and classical biotypes, including polymyxin B sensitivity, chicken cell agglutination, type of tcpA and rstR genes, and restriction patterns of conserved rRNA genes (ribotypes), differentiated the 24 strains of toxigenic V. cholerae O1 into three types designated the Matlab types. Although all of the strains belonged to ribotypes that have been previously found among El Tor vibrios, type I strains had more traits of the classical biotype while type II and III strains appeared to be more like the El Tor biotype but had some classical biotype properties. These results suggest that, although the classical and El Tor biotypes have different lineages, there are possible naturally occurring genetic hybrids between the classical and El Tor biotypes that can cause cholera and thus provide new insight into the epidemiology of cholera in Bangladesh. Furthermore, the existence of such novel strains may have implications for the development of a cholera vaccine.New epidemic strains of toxigenic Vibrio cholerae have appeared at least twice in recent human history (10). Strains of the classical biotype, which had probably been responsible for most of the epidemic disease in the 19th century and much of the 20th century, were largely replaced as the predominant cause of epidemic cholera by strains of the El Tor biotype in most of the regions where cholera is endemic, beginning in 1961. However, the classical biotype strains reemerged as a predominant epidemic strain in parts of Bangladesh in 1982 (8, 25) and coexisted with the El Tor strains, causing disease until 1993. A second new epidemic strain, carrying the O139 rather than the O1 antigen, emerged in southern Asia in 1992 (7, 24). The O139 and El Tor O1 strains continue to cause epidemics of cholera, and there are indications that the incidence of cholera due to the O139 serogroup is on the rise in parts of India and Bangladesh.The classical and El Tor biotypes of V. cholerae are closely related in their O-antigen biosynthetic genes (21, 31), although these two biotypes diffe...