Background
Aplastic anemia (AA) is a bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia which can lead to life-threatening complications. Our objective was to study the telomerase genes (TERT and TERC) variants, explore their relationship to telomere shortening and TERT gene expression, and to identify variants in the MPL gene within Egyptian AA patients.
Methods
Forty AA patients and 40 sex- and age-matched healthy individuals as the control group were studied through sequencing of TERT, TERC, and MPL genes. Quantitative real-time PCR (qRT-PCR) was used for measuring TERT gene expression. Telomere length (TL) was measured using the Quantitative Fluorescence In Situ Hybridization (Q-FISH) technique. In silico analysis was performed for the prediction of the pathogenicity of resultant variants.
Results
Sequencing of MPL, TERT, and TERC genes identified 26 variants. Eleven variants were identified in the MPL gene. Three of them are pathogenic: two missense [c.305 G>A, c.1589 C>T] and one splice site [g.9130T>G]. TERT gene sequencing showed thirteen variants, among them, four novel [c.484G>A, c.499G>A, c.512G>A, c.3164C>G] and two previously reported [c.835G>A, c.2031C>T] were predicted to be pathogenic. Two variants were characterized within the TERC gene; n.514A>G and n.463 C>T. TERT gene expression was downregulated in 70% of studied patients and the Q-FISH technique detected telomere shortening in 82.5% of patients.
Conclusions
Twenty-six pathogenic and benign variants within the TERC, TERT, and MPL genes were identified among the studied AA patients that were in several cases associated with shortened telomeres and/or lower TERT gene expression. Genotype/phenotype correlation in AA patients is of great importance in explaining the disease severity and guiding therapeutic decisions.