Campylobacter jejuni, a gram-negative motile bacterium, secretes a set of proteins termed the Campylobacter invasion antigens (Cia proteins). The purpose of this study was to determine whether the flagellar apparatus serves as the export apparatus for the Cia proteins. Mutations were generated in five genes encoding three structural components of the flagella, the flagellar basal body (flgB and flgC), hook (flgE2), and filament (flaA and flaB) genes, as well as in genes whose products are essential for flagellar protein export (flhB and fliI). While mutations that affected filament assembly were found to be nonmotile (Mot ؊ ) and did not secrete Cia proteins (S ؊ ), a flaA (flaB ؉ ) filament mutant was found to be nonmotile but Cia protein secretion competent (Mot ؊ , S ؉ ). Complementation of a flaA flaB double mutant with a shuttle plasmid harboring either the flaA or flaB gene restored Cia protein secretion, suggesting that Cia export requires at least one of the two filament proteins. Infection of INT 407 human intestinal cells with the C. jejuni mutants revealed that maximal invasion of the epithelial cells required motile bacteria that are secretion competent. Collectively, these data suggest that the C. jejuni Cia proteins are secreted from the flagellar export apparatus.Campylobacter jejuni, a gram-negative motile bacterium, is a frequent cause of human gastrointestinal infections (39). The spectrum of disease observed in C. jejuni-infected individuals ranges from asymptomatic to severe enteritis characterized by fever, severe abdominal cramping, and diarrhea with blood and mucus (2, 4). By analogy with other more extensively characterized bacterial pathogens, the mechanism of C. jejunimediated enteritis is proposed to be multifactorial. Previous work has indicated that motility as well as the presence of the flagellum contributes to the ability of C. jejuni to colonize the intestinal tract of animals (33,36,42).The flagellum of C. jejuni is composed of a basal body, hook, and filament. The flagellar filament is comprised of two proteins, FlaA and FlaB, although it appears that FlaA is the preferred subunit (3). While the C. jejuni FlaA and FlaB flagellin proteins are transcribed concomitantly (16), the flaA gene is regulated by 28 and the flaB gene is regulated by 54 (3, 16). Hendrixson et al. (16) noted that a C. jejuni isolate deficient in 28 , which is encoded by the fliA gene, is able to assemble a truncated filament composed exclusively of the flagellin protein FlaB. This result indicates that the regulation of flagellar gene expression within C. jejuni differs from the regulation in more intensely studied systems such as that of Salmonella enterica. Unlike flagellar gene expression in C. jejuni, flagellar gene expression in S. enterica is initiated by a master regulator, while late gene expression and motility require 28 (1). Previous work in our laboratory has demonstrated that C. jejuni synthesizes a set of proteins during coculture with epithelial cells, a subset of which are secreted. The sec...