Background: Mammalian motor circuits display remarkable cellular diversity with hundreds of motor neuron (MN) subtypes innervating hundreds of different muscles. Extensive research on limb muscle-innervating MNs has begun to elucidate the genetic programs that control animal locomotion. In striking contrast, the molecular mechanisms underlying the development of axial muscle-innervating MNs, which control breathing and spinal alignment, are poorly studied.
Methods:Our previous studies indicated that the function of the Collier/Olf/Ebf (COE) family of transcription factors (TFs) in axial MN development may be conserved from nematodes to simple chordates. Here, we examine the expression pattern of all four mouse COE family members (mEbf1-mEbf4) in spinal MNs and employ genetic approaches in both nematodes and mice to investigate their function in axial MN development.
Results:We report that mEbf1 and mEbf2 are expressed in distinct MN clusters (termed "columns") that innervate different axial muscles. Mouse Ebf1 is expressed in MNs of the hypaxial motor column (HMC), which is necessary for breathing, while mEbf2 is expressed in MNs of the medial motor column (MMC) that control spinal alignment. Our characterization of Ebf2 knock-out mice revealed a requirement for Ebf2 in the differentiation of a subset of MMC MNs, indicating molecular diversity within MMC neurons. Intriguingly, transgenic expression of mEbf1 or mEbf2 can rescue axial MN differentiation and locomotory defects in nematodes (Caenorhabditis elegans) lacking unc-3, the sole C. elegans ortholog of the COE family, suggesting functional conservation among mEbf1, mEbf2 and nematode UNC-3.
Conclusions:These findings support the hypothesis that the genetic programs controlling axial MN development are deeply conserved across species, and further advance our understanding of such programs by revealing an essential role for Ebf2 in mouse axial MNs.Because human mutations in COE ortholgs lead to neurodevelopmental disorders characterized by motor developmental delay, our findings may advance our understanding of these human conditions.3 BACKGROUND The mammalian neuromuscular system is essential for distinct motor behaviors ranging from locomotion and dexterity to basic motor functions, such as breathing and maintenance of spinal alignment [1]. The underlying basis for achieving these diverse outputs lies in the assembly of distinct neuronal circuits dedicated to control different muscles. In the mouse spinal cord, for example, these circuits are composed of various motor neuron (MN) subtypes organized into distinct clusters of cells (termed "columns") along the rostrocaudal axis ( Fig. 1A). At the brachial and lumbar levels, MNs of the lateral motor column (LMC) innervate limb muscles, which are essential for locomotion and dexterity [2,3]. Breathing is controlled by cervical MNs of the phrenic motor column (PMC) that innervate the diaphragm, and by thoracic MNs of the hypaxial motor column (HMC) that innervate hypaxial (intercostal and abdominal) muscles. In...