Motivation: Antigen recognition by T-cell receptors (TCRs) triggers cascades of immune responses. Successful predictions of the TCR and antigen (as peptide) bindings therefore signify the advancements in immunotherapy. However, most of current TCR-peptide interaction predictors fail to predict unseen data. This limitation may be derived from the conventional usage of TCR and/or peptide sequences as input, which may not adequately reflect their structural characteristics. Therefore, incorporating the TCR and peptide structural information into the prediction model to improve the generalizability is necessary. Results: We presented epiTCR-KDA as a new predictor of TCR-peptide binding that utilises structural information, specifically the dihedral angles between the residues of both the peptide and the TCR. This structural descriptor was integrated into a model constructed using knowledge distillation to enhance its generalizability. The epiTCR-KDA demonstrated competitive prediction performance, with an AUC of 0.99 for seen data and AUC of 0.86 for unseen data. Across multiple public datasets, epiTCR-KDA consistently outperformed other predictors, such as epiTCR, NetTCR, BERTrand, TEIM-Seq, TEINet, and ImRex, maintaining a median AUC of 0.9 (ranging from 0.82 to 0.91). Further analysis of epiTCR-KDA performance indicated that the cosine similarity of the dihedral angle vectors between the unseen testing data and training data is crucial for its stable performance. In conclusion, our epiTCR-KDA model, with its capacity to predict for unseen data, has brought us one step closer toward the development of a highly effective pipeline for affordable antigen-based immunotherapy. Availability and implementation: epiTCR-KDA is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR-KDA) .