2021
DOI: 10.1063/5.0056891
|View full text |Cite
|
Sign up to set email alerts
|

Mutual singularities of overlapping attractor and repeller

Abstract: We apply the concepts of relative dimensions and mutual singularities to characterize the fractal properties of overlapping attractor and repeller in chaotic dynamical systems. We consider one analytically solvable example (a generalized baker’s map); two other examples, the Anosov–Möbius and the Chirikov–Möbius maps, which possess fractal attractor and repeller on a two-dimensional torus, are explored numerically. We demonstrate that although for these maps the stable and unstable directions are not orthogona… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 23 publications
0
0
0
Order By: Relevance