We consider several examples of dynamical systems demonstrating overlapping attractor and repeller. These systems are constructed via introducing controllable dissipation to prototypic models with chaotic dynamics (Anosov cat map, Chirikov standard map, and incompressible three-dimensional flow of the ABC-type on a three-torus) and ergodic non-chaotic behavior (skew-shift map). We employ the Kantorovich–Rubinstein–Wasserstein distance to characterize the difference between the attractor and the repeller, in dependence on the dissipation level.
We study the heterodimensional dynamics in a simple map on a three-dimensional torus. This map consists of a two-dimensional driving Anosov map and a one-dimensional driven Möbius map, and demonstrates the collision of a chaotic attractor with a chaotic repeller if parameters are varied. We explore this collision by following tangent bifurcations of the periodic orbits and establish a regime where periodic orbits with different numbers of unstable directions coexist in a chaotic set. For this situation, we construct a heterodimensional cycle connecting these periodic orbits. Furthermore, we discuss properties of the rotation number and of the nontrivial Lyapunov exponent at the collision and in the heterodimensional regime.
We apply the concepts of relative dimensions and mutual singularities to characterize the fractal properties of overlapping attractor and repeller in chaotic dynamical systems. We consider one analytically solvable example (a generalized baker’s map); two other examples, the Anosov–Möbius and the Chirikov–Möbius maps, which possess fractal attractor and repeller on a two-dimensional torus, are explored numerically. We demonstrate that although for these maps the stable and unstable directions are not orthogonal to each other, the relative Rényi and Kullback–Leibler dimensions as well as the mutual singularity spectra for the attractor and repeller can be well approximated under orthogonality assumption of two fractals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.