2018
DOI: 10.5281/zenodo.1313201
|View full text |Cite
|
Sign up to set email alerts
|

mwaskom/seaborn: v0.9.0 (July 2018)

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
37
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
4
4
2

Relationship

0
10

Authors

Journals

citations
Cited by 113 publications
(37 citation statements)
references
References 0 publications
0
37
0
Order By: Relevance
“…The complete source of this paper, including the data, code, and instructions for training the classification model, can be found at github.com/rice-solar-physics/synthetic-observablespaper-observations. Facility: SDO(AIA) Software: astropy (v3.1.0, The Astropy Collaboration et al 2018;The Astropy Collaboration 2018), dask (v1.0.0, Rocklin 2015), drms (v0.5, Glogowski et al 2019b,a), matplotlib (v3.0.2, Hunter 2007Caswell et al 2018), numpy (v1.15.4, Harris et al 2020), PythonTeX (v0.16, Poore 2015), scikit-learn (v0.20, Pedregosa et al 2011Grisel et al 2019), seaborn (v0.9.0, Waskom et al 2018), scipy (v1.1.0, Virtanen et al 2020, SolarSoftware (Freeland & Handy 1998), sunpy (v0.9.5, Mumford et al 2018…”
Section: Acknowledgmentsmentioning
confidence: 99%
“…The complete source of this paper, including the data, code, and instructions for training the classification model, can be found at github.com/rice-solar-physics/synthetic-observablespaper-observations. Facility: SDO(AIA) Software: astropy (v3.1.0, The Astropy Collaboration et al 2018;The Astropy Collaboration 2018), dask (v1.0.0, Rocklin 2015), drms (v0.5, Glogowski et al 2019b,a), matplotlib (v3.0.2, Hunter 2007Caswell et al 2018), numpy (v1.15.4, Harris et al 2020), PythonTeX (v0.16, Poore 2015), scikit-learn (v0.20, Pedregosa et al 2011Grisel et al 2019), seaborn (v0.9.0, Waskom et al 2018), scipy (v1.1.0, Virtanen et al 2020, SolarSoftware (Freeland & Handy 1998), sunpy (v0.9.5, Mumford et al 2018…”
Section: Acknowledgmentsmentioning
confidence: 99%
“…We thank Akshay Agrawal, Shaojie Bai, Shane Barratt, Nicola Bastianello, Priya Donti, Zico Kolter, Christian Kroer, Maximilian Nickel, Alex Peysakhovich, Bartolomeo Stellato, and Mary Williamson for insightful discussions and acknowledge the Python community (Van Rossum and Drake Jr, 1995;Oliphant, 2007) for developing the core set of tools that enabled this work, including PyTorch (Paszke et al, 2019), Hydra (Yadan, 2019), Jupyter (Kluyver et al, 2016), Matplotlib (Hunter, 2007, seaborn (Waskom et al, 2018), numpy (Oliphant, 2006; Van Der Walt et al, 2011), pandas (McKinney, 2012, and SciPy (Jones et al, 2014).…”
Section: Acknowledgmentsmentioning
confidence: 99%
“…DATA AVAIL-ABILITY: The simulation data and plotting scripts to reproduce the presented findings are available at Lichtenberg et al (2020a,b,c, osf.io/m4jh7). SOFTWARE: SPI-DER (Bower et al 2018), SOCRATES (Edwards & Slingo 1996), NUMPY (Harris et al 2020;Reddy et al 2020), SCIPY (Virtanen et al 2020a,b), PANDAS (McKinney 2010;Reback et al 2019), MATPLOTLIB (Hunter 2007;Caswell et al 2019), SEABORN (Waskom et al 2018).…”
Section: Acknowledgmentsmentioning
confidence: 99%