High data rate sensors such as video cameras are becoming ubiquitous in the Internet of Things. This paper describes GigaSight, an Internet-scale repository of crowd-sourced video content, with strong enforcement of privacy preferences and access controls. The GigaSight architecture is a federated system of VM-based cloudlets that perform video analytics at the edge of the Internet, thus reducing demand for ingress bandwidth into the cloud. Denaturing, which is the owner-specific reduction in fidelity of video content to preserve privacy, is one form of analytics on cloudlets. Content-based indexing for search is another form of cloudlet-based analytics.
An emerging class of interactive wearable cognitive assistance applications is poised to become one of the key demonstrators of edge computing infrastructure. In this paper, we design seven such applications and evaluate their performance in terms of latency across a range of edge computing configurations, mobile hardware, and wireless networks, including 4G LTE. We also devise a novel multi-algorithm approach that leverages temporal locality to reduce end-to-end latency by 60% to 70%, without sacrificing accuracy. Finally, we derive target latencies for our applications, and show that edge computing is crucial to meeting these targets. CCS CONCEPTS • Human-centered computing → Empirical studies in ubiquitous and mobile computing; Ubiquitous and mobile computing systems and tools; • Software and its engineering → Distributed systems organizing principles; • Networks → Wireless access points, base stations and infrastructure; Mobile networks; Network measurement; • Computer systems organization → Real-time system architecture;
Training an agent to solve control tasks directly from high-dimensional images with model-free reinforcement learning (RL) has proven difficult. The agent needs to learn a latent representation together with a control policy to perform the task. Fitting a high-capacity encoder using a scarce reward signal is not only sample inefficient, but also prone to suboptimal convergence. Two ways to improve sample efficiency are to extract relevant features for the task and use off-policy algorithms. We dissect various approaches of learning good latent features, and conclude that the image reconstruction loss is the essential ingredient that enables efficient and stable representation learning in image-based RL. Following these findings, we devise an off-policy actor-critic algorithm with an auxiliary decoder that trains endto-end and matches state-of-the-art performance across both model-free and model-based algorithms on many challenging control tasks. We release our code to encourage future research on image-based RL 1 .
Training an agent to solve control tasks directly from high-dimensional images with model-free reinforcement learning (RL) has proven difficult. A promising approach is to learn a latent representation together with the control policy. However, fitting a high-capacity encoder using a scarce reward signal is sample inefficient and leads to poor performance.
Prior work has shown that auxiliary losses, such as image reconstruction, can aid efficient representation learning.
However, incorporating reconstruction loss into an off-policy learning algorithm often leads to training instability. We explore the underlying reasons and
identify variational autoencoders, used by previous investigations, as the cause of the divergence.
Following these findings, we propose effective techniques to improve training stability.
This results in a simple approach capable of
matching state-of-the-art model-free and model-based algorithms on MuJoCo control tasks. Furthermore, our approach demonstrates robustness to observational noise, surpassing existing approaches in this setting. Code, results, and videos are anonymously available at https://sites.google.com/view/sac-ae/home.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.