Software product lines are used to develop a set of software products that, while being different, share a common set of features. Feature models are used as a compact representation of all the products (e.g., possible configurations) of the product line. The number of products that a feature model encodes may grow exponentially with the number of features. This increases the cost of testing the products within a product line. Some proposals deal with this problem by reducing the testing space using different techniques. However, a daunting challenge is to explore how the cost and value of test cases can be modelled and optimized in order to have lower cost testing processes. In this paper, we present TESting vAriAbiLity Intensive Systems (TESALIA), an approach that uses automated analysis of feature models to optimize the testing of variability intensive systems. We model test value and cost as feature attributes and then we use a constraint satisfaction solver to prune, prioritize and package product line tests complementing prior work in the software product line testing literature. A prototype implementation of TESALIA is used for validation in an Android example showing the benefits of maximizing the mobile market-share (the value function) while meeting a budgetary constraint.
Abstract:Smartphones are mobile devices that travel with their owners and provide increasingly powerful services. The software implementing these services must conserve battery power since smartphones may operate for days without being recharged. It is hard, however, to design smartphone software that minimizes power consumption. For example, multiple layers of abstractions and middleware sit between an application and the hardware, which make it hard to predict the power consumption of a potential application design accurately. Application developers must therefore wait until after implementation (when changes are more expensive) to determine the power consumption characteristics of a design. This paper provides three contributions to the study of applying model-driven engineering to analyze power consumption early in the lifecycle of smartphone applications. First, it presents a model-driven methodology for accurately emulating the power consumption of smartphone application architectures. Second, it describes the System Power Optimization Tool (SPOT), which is a model-driven tool that automates power consumption emulation code generation and simplifies analysis. Third, it empirically demonstrates how SPOT can estimate power consumption to within ∼3-4% of actual power consumption for representative smartphone applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.