We present an experimental investigation into the third-order nonlinearity of conventional crystalline (c-Si) and porous (p-Si) silicon with Z-scan technique at 800-nm and 2.4- μ m wavelengths. The Gaussian decomposition method is applied to extract the nonlinear refractive index, n 2 , and the two-photon absorption (TPA) coefficient, β , from the experimental results. The nonlinear refractive index obtained for c-Si is 7 ± 2 × 10 − 6 cm 2 /GW and for p-Si is − 9 ± 3 × 10 − 5 cm 2 /GW. The TPA coefficient was found to be 2.9 ± 0.9 cm/GW and 1.0 ± 0.3 cm/GW for c-Si and p-Si, respectively. We show an enhancement of the nonlinear refraction and a suppression of TPA in p-Si in comparison to c-Si, and the enhancement gets stronger as the wavelength increases.