Axo-glial junctions (AGJs) play a critical role in the organization and maintenance of molecular domains in myelinated axons. Neurexin IV͞Caspr1͞paranodin (NCP1) is an important player in the formation of AGJs because it recruits a paranodal complex implicated in the tethering of glial proteins to the axonal membrane and cytoskeleton. Mice deficient in either the axonal protein NCP1 or the glial ceramide galactosyltransferase (CGT) display disruptions in AGJs and severe ataxia. In this article, we correlate these two phenotypes and show that both NCP1 and CGT mutants develop large swellings accompanied by cytoskeletal disorganization and degeneration in the axons of cerebellar Purkinje neurons. We also show that ␣II spectrin is part of the paranodal complex and that, although not properly targeted, this complex is still formed in CGT mutants. Together, these findings establish a physiologically relevant link between AGJs and axonal cytoskeleton and raise the possibility that some neurodegenerative disorders arise from disruption of the AGJs.myelin ͉ paranodes ͉ cerebellum ͉ ataxia T he anatomical organization of myelinated fibers into distinct domains is the basis for the saltatory mode of action potential propagation. In the axons, these molecular domains (internode, juxtaparanode, paranode, and node of Ranvier) form as a result of specific polarization driven by signaling between the myelinating glial cells and neurons that has yet to be fully understood. In the paranodal region, closely apposed axon-glial membranes form specialized cell junctions, which resemble the ladder-like invertebrate septate junctions, and are referred to as paranodal septate junctions or paranodal axo-glial junctions (AGJs) (1-4).Three major proteins have been shown to localize to the paranodal AGJs: NCP1 (also known as Caspr1 or paranodin) and contactin (CNTN) on the axonal side and neurofascin (NF155), the 155-kDa isoform on the glial side (5-9). Although NF155 is the only known glial protein at the paranodal membrane, a number of nonparanodal glial proteins are required for proper formation, maintenance, and distribution of AGJs, as in the case of ceramide galactosyltransferase (CGT), proteolipid protein, myelin-basic protein, myelin-associated glycoprotein, 2Ј,3Ј-cyclic nucleotide 3Ј-phosphodiesterase, and the transcription factor Nkx6-2 (10-17).Genetic ablation of NCP1 and CNTN in mice results in the loss of AGJs and a failure to segregate Na ϩ and K ϩ channels at the nodes and juxtaparanodes, respectively (5, 6). Similar phenotypes were observed at the paranodes in CGT mutants (18,19). CGT encodes an enzyme that is needed for the biosynthesis of two important myelin lipids, galactocerebroside and sulfatide (10,(18)(19)(20)(21). Using subcellular fractionation of NF155 in detergents, Rasband and coworkers (22) proposed a model in which myelin lipids assemble in stable lipid rafts to stabilize the clustering of NF155 at the glial side of AGJs. This model is consistent with the phenotype of CGT mutants in which defective biosynthes...