Galactocerebroside (GalC) and sulfatide are abundant myelin lipids. In mice incapable of synthesizing these lipids, myelin is thin and regionally unstable and exhibits several subtle structural abnormalities. Although galactolipid-null mice have been beneficial in the analysis of galactolipid function, it has not been possible to differentiate between the functions of GalC and sulfatide with these mice alone. In the present work, we have analyzed a murine model that forms normal levels of GalC but is incapable of synthesizing sulfatide. By comparing a plethora of morphological features between the galactolipid-null and the sulfatide-null mice, we have begun to differentiate between the specific functions of these closely related lipids. The most striking difference between these two mutants is the reduction of myelin developmental abnormalities (e.g., redundant and uncompacted myelin sheaths) in young adult sulfatide-null mice as compared with the galactolipid-null animals. Although sulfatide appears to play a limited role in myelin development, this lipid is essential for myelin maintenance, as the prevalence of redundant, uncompacted, and degenerating myelin sheaths as well as deteriorating nodal/paranodal structure is increased significantly in aged sulfatide-null mice as compared with littermate wildtype mice. Finally, we show that the role played by sulfatide in CNS maintenance is not limited to the myelin sheath, as axonal caliber and circularity are normal in young adult mutant mice but are significantly altered in aged sulfatide-null animals.
We have analyzed mice that lack both the myelin-associated glycoprotein (MAG) and the myelin galactolipids, two glial components implicated in mediating axo-glial interactions during the myelination process. The single-mutant mice produce abnormal myelin containing similar ultrastructural abnormalities, suggesting that these molecules may play an overlapping role in myelin formation. Furthermore, the absence of the galactolipids results in a disruption in paranodal axo-glial interactions, and we show here that similar, albeit less severe, abnormalities exist in the developing MAG mutant. In the double-mutant mice, maintenance of axo-glial adhesion is significantly more affected than in the single mutants, supporting the overlapping function hypothesis. We also show that independently of MAG, galactolipids, and paranodal junctional components, immature nodes of Ranvier form normally, but rapidly destabilize in their absence. These data indicate that distinct molecular mechanisms are responsible for the formation and maintenance of axo-glial interactions.
To ensure rapid and efficient impulse conduction, myelinated axons establish and maintain specific protein domains. For instance, sodium (Na+) channels accumulate in the node of Ranvier; potassium (K+) channels aggregate in the juxtaparanode and neurexin/caspr/paranodin clusters in the paranode. Our understanding of the mechanisms that control the initial clustering of these proteins is limited and less is known about domain maintenance. Correlative data indicate that myelin formation and/or mature myelin-forming cells mediate formation of all three domains. Here, we test whether myelin is required for maintaining Na+ channel domains in the nodal gap by employing two demyelinating murine models: (1) cuprizone ingestion, which induces complete demyelination through oligodendrocyte toxicity; and (2) ceramide galactosyltransferase deficient mice, which undergo spontaneous adult-onset demyelination without oligodendrocyte death. Our data indicate that the myelin sheath is essential for long-term maintenance of sodium channel domains; however, oligodendrocytes, independent of myelin, provide a partial protective influence on the maintenance of nodal Na+ channel clusters. Thus, we propose that multiple mechanisms regulate the maintenance of nodal protein organization. Finally, we present evidence that following the loss of Na+ channel clusters the chronological progression of expression and reclustering of Na+ channel isoforms during the course of CNS remyelination recapitulates development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.