Purpose: To evaluate single-shot echo planar imaging (SS-EPI), as an alternative to snapshot balanced steady state free precession (bSSFP) imaging, for arterialspin-labeled cardiac MR (ASL-CMR). This study presents a practical implementation SS-EPI tailored to the needs of ASL-CMR at 3T and demonstrates sequential multi-slice ASL with no increase in scan time. Methods: Reduced field of view SS-EPI was performed using a 2DRF pulse. A spinecho was used with crushers optimized to maximize blood suppression and minimize myocardial signal loss, based on experiments in 4 healthy volunteers. SS-EPI was evaluated against the widely used bSSFP reference method in single-slice ASL-CMR in 4 healthy volunteers, during both systole and diastole. Sequential multi-slice ASL-CMR with SS-EPI was demonstrated during diastole (3 slices: basal, mid, and apical short-axis) and during systole (2 slices: mid and apical short-axis), in 3 volunteers. Results: Global myocardial perfusion for diastolic SS-EPI (1.66 ± 0.73 mL/g/min) and systolic SS-EPI (1.50 ± 0.36 mL/g/min) were found to be statistically equivalent (2 one-sided test with a difference of 0.4 mL/g/min) to diastolic bSSFP (duration of 1 cardiac cycle, 1.60 ± 0.80 mL/g/min) with P-values of 0.022 and 0.031, respectively.Global myocardial perfusion for sequential multi-slice experiments was 1.64 ± 0.47, 1.34 ± 0.29, and 1.88 ± 0.58 for basal, mid, and apical SAX slices during diastole and was 1.61 ± 0.35, and 1.66 ± 0.49 for mid and apical slice during systole. These values are comparable to published ASL-CMR and positron emission tomography studies. Conclusion: SS-EPI is a promising alternative to bSSFP imaging for ASL-CMR and can potentially improve the spatial coverage of ASL-CMR by 3-fold during diastole and 2-fold during systole, without increasing scan time.