BackgroundMyocardial arterial spin labeling (ASL) is a noninvasive MRI based technique that is capable of measuring myocardial blood flow (MBF) in humans. It suffers from poor sensitivity to MBF due to high physiological noise (PN). This study aims to determine if the sensitivity of myocardial ASL to MBF can be improved by reducing image acquisition time, via parallel imaging.MethodsMyocardial ASL scans were performed in 7 healthy subjects at rest using flow-sensitive alternating inversion recovery (FAIR) tagging and balanced steady state free precession (SSFP) imaging. Sensitivity encoding (SENSE) with a reduction factor of 2 was used to shorten each image acquisition from roughly 300 ms per heartbeat to roughly 150 ms per heartbeat. A paired Student’s t-test was performed to compare measurements of myocardial blood flow (MBF) and physiological noise (PN) from the reference and accelerated methods.ResultsThe measured PN (mean ± standard deviation) was 0.20 ± 0.08 ml/g/min for the reference method and 0.08 ± 0.05 ml/g/min for the accelerated method, corresponding to a 60% reduction. PN measured from the accelerated method was found to be significantly lower than that of the reference method (p = 0.0059). There was no significant difference between MBF measured from the accelerated and reference ASL methods (p = 0.7297).ConclusionsIn this study, significant PN reduction was achieved by shortening the acquisition window using parallel imaging with no significant impact on the measured MBF. This indicates an improvement in sensitivity to MBF and may also enable the imaging of subjects with higher heart rates and imaging during systole.
Arterial spin labeling (ASL) is a cardiovascular magnetic resonance (CMR) technique for mapping regional myocardial blood flow. It does not require any contrast agents, is compatible with stress testing, and can be performed repeatedly or even continuously. ASL-CMR has been performed with great success in small-animals, but sensitivity to date has been poor in large animals and humans and remains an active area of research. This review paper summarizes the development of ASL-CMR techniques, current state-of-the-art imaging methods, the latest findings from pre-clinical and clinical studies, and future directions. We also explain how successful developments in brain ASL and small-animal ASL-CMR have helped to inform developments in large animal and human ASL-CMR.
VSASL is a promising alternative to FAIR ASL in the heart and is well suited for scenarios when transit delays are long. Magn Reson Med 80:272-278, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Purpose To develop and evaluate an improved velocity‐selective (VS) labeling pulse for myocardial arterial spin labeling (ASL) perfusion imaging that addresses two limitations of current pulses: (1) spurious labeling of moving myocardium and (2) low labeling efficiency. Methods The proposed myocardial VSASL labeling pulse is designed using a Fourier Transform based Velocity‐Selective labeling pulse train. The pulse utilizes bipolar velocity‐encoding gradients, a 9‐tap velocity‐encoding envelope, and double‐refocusing pulses with Malcolm Levitt phase cycling. Amplitudes of the velocity‐encoding envelope were optimized to minimize the labeling of myocardial velocities during stable diastole (±2‐3 cm/s) and maximize the labeling of coronary velocities (10‐130 cm/s during rest/stress or 10‐70 cm/s during rest). Myocardial ASL experiments were performed in seven healthy subjects using the previously developed VS‐ASL protocol by Jao et al with the two proposed VS pulses and original VS pulse. Myocardial ASL experiments were also performed using FAIR ASL. Myocardial perfusion and physiological noise (PN) were evaluated and compared. Results Bloch simulations of the first and second proposed pulses show <2% labeling over ±3 cm/s and ±2 cm/s, respectively. Bloch simulations also show the mean labeling efficiency of arterial blood is 1.23 over the relevant coronary arterial ranges. In‐vivo VSASL experiments show the proposed pulses provided comparable measurements to FAIR ASL and reduced TSNR in 5 of 7 subjects compared to the original VS pulse. Conclusion We demonstrate an improved VS labeling pulse specifically for myocardial ASL perfusion imaging to reduce spurious labeling of moving myocardium and PN.
Purpose: To evaluate the potential value of combining multiple constraints for highly accelerated cardiac cine MRI. Methods:A locally low rank (LLR) constraint and a temporal finite difference (FD) constraint were combined to reconstruct cardiac cine data from highly undersampled measurements.Retrospectively undersampled 2D Cartesian reconstructions were quantitatively evaluated against fully-sampled data using normalized root mean square error, structural similarity index (SSIM) and high frequency error norm (HFEN). This method was also applied to 2D golden-angle radial real-time imaging to facilitate single breath-hold whole-heart cine (12 short-axis slices, 9-13 sec single breath hold). Reconstruction was compared against state-of-the-art constrained reconstruction methods: LLR, FD, k-t SLR.Results: At 10 to 60 spokes/frame, LLR+FD better preserved fine structures and depicted myocardial motion with reduced spatio-temporal blurring in comparison to existing methods. LLR yielded higher SSIM ranking than FD; FD had higher HFEN ranking than LLR. LLR+FD combined the complimentary advantages of the two, and ranked the highest in all metrics for all retrospective undersampled cases. Single breath-hold multi-slice cardiac cine with prospective undersampling was enabled with in-plane spatio-temporal resolutions of 2×2 mm 2 and 40 ms. Conclusion:Highly accelerated cardiac cine is enabled by the combination of 2D undersampling and the synergistic use of LLR and FD constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.