The flavonoid myricetin is found in several sedative herbs, for example, the St. John's Wort, but its influence on sedation and its possible mechanism of action are unknown. Using patch-clamp technique on a brain slice preparation, the present study found that myricetin promoted GABAergic activity in the neurons of hypothalamic paraventricular nucleus (PVN) by increasing the decay time and frequency of the inhibitory currents mediated by GABAA receptor. This effect of myricetin was not blocked by the GABAA receptor benzodiazepine- (BZ-) binding site antagonist flumazenil, but by KN-62, a specific inhibitor of the Ca2+/calmodulin-stimulated protein kinase II (CaMK-II). Patch clamp and live Ca2+ imaging studies found that myricetin could increase Ca2+ current and intracellular Ca2+ concentration, respectively, via T- and L-type Ca2+ channels in rat PVN neurons and hypothalamic primary culture neurons. Immunofluorescence staining showed increased phosphorylation of CaMK-II after myricetin incubation in primary culture of rat hypothalamic neurons, and the myricetin-induced CaMK-II phosphorylation was further confirmed by Western blotting in PC-12 cells. The present results suggest that myricetin enhances GABAA receptor activity via calcium channel/CaMK-II dependent mechanism, which is distinctively different from that of most existing BZ-binding site agonists of GABAA receptor.