The gut-derived orexigenic peptide hormone ghrelin enhances neuronal firing in the substantia nigra pars compacta, where dopaminergic neurons modulate the function of the nigrostriatal system for motor coordination. Here we describe a novel mechanism by which ghrelin enhances firing of nigral dopaminergic neurons by inhibiting voltage-gated potassium Kv7/KCNQ/M-channels through its receptor GHS-R1a and activation of the PLC-PKC pathway. Brain slice recordings of substantia nigra pars compacta neurons reveal that ghrelin inhibits native Kv7/KCNQ/M-currents. This effect is abolished by selective inhibitors of GHSR1a, PLC and PKC. Transgenic suppression of native Kv7/KCNQ/M-channels in mice or channel blockade with XE991 abolishes ghrelin-induced hyperexcitability. In vivo, intracerebroventricular ghrelin administration causes increased dopamine release and turnover in the striatum. Microinjection of ghrelin or XE991 into substantia nigra pars compacta results in contralateral dystonic posturing, and attenuation of catalepsy elicited by systemic administration of the D2 receptor antagonist haloperidol. Our findings indicate that the ghrelin/ KCNQ signalling is likely a common pathway utilized by the nervous system.
Increasing evidence has shown that oxidative stress may be implicated in chronic stress-induced depression. Several flavonoids with anti-oxidative effects have been proved to be anti-depressive. Myricetin is a well-defined flavonoid with the anti-oxidative, anti-inflammatory, anti-apoptotic, and neuroprotective properties. The aim of the present study is to investigate the possible effects of chronic administration of myricetin on depressant-like behaviors in mice subjected to repeated restraint (4 h/day) for 21 days. Our results showed that myricetin administration specifically reduced the immobility time in mice exposed to chronic stress, as tested in both forced swimming test and tail suspension test. Myricetin treatment improved activities of glutathione peroxidase (GSH-PX) in the hippocampus of stressed mice. In addition, myricetin treatment decreased plasma corticosterone levels of those mice subjected to repeated restraint stress. The effects of myricetin on the brain-derived neurotrophic factor (BDNF) levels in hippocampus were also investigated. The results revealed that myricetin normalized the decreased BDNF levels in mice subjected to repeated restraint stress. These findings provided more evidence that chronic administration of myricetin improves helpless behaviors. The protective effects of myricetin might be partially mediated by an influence on BDNF levels and might be attributed to myricetin-mediated anti-oxidative stress in the hippocampus.
Parkinson’s disease (PD) is a neurodegenerative disease usually caused by neuroinflammation, oxidative stress and other etiologies. Recent studies have found that the cannabinoid system present in the basal ganglia has a strong influence on the progression of PD. Altering the cannabinoid receptor activation status by modulating endogenous cannabinoid (eCB) levels can exert an anti-movement disorder effect. Therefore, the development of drugs that modulate the endocannabinoid system may be a novel strategy for the treatment of PD. However, eCB regulation is complex, with diverse cannabinoid receptor functions and the presence of dopaminergic, glutamatergic, and γ-aminobutyric signals interacting with cannabinoid signaling in the basal ganglia region. Therefore, the study of eCB is challenging. Here, we have described the function of the cannabinoid system in the basal ganglia and its association with PD in three parts (eCBs, cannabinoid receptors, and factors regulating the cannabinoid metabolism) and summarized the mechanisms of action related to the cannabinoid analogs currently aimed at treating PD. The shortcomings identified from previous studies and the directions that should be explored in the future will provide insights into new approaches and ideas for the future development of cannabinoid-based drugs and the treatment of PD.
The effects of myricetin on 6-hydroxydopamine (6-OHDA)-induced neurodegeneration in the substantia nigra-striatum system were investigated. By high-performance liquid chromatography electrochemical detection, we showed that the dopamine content in the striatum decreased after 6-OHDA treatment, which could be restored by myricetin. The immunohistochemistry and semiquantitative reverse transcription-PCR studies showed that myricetin could prevent the 6-OHDA-induced decrease of tyrosine hydroxylase positive neurons and the tyrosine hydroxylase mRNA expression in the substantia nigra. Perls' iron staining study further demonstrated that myricetin prevented the 6-OHDA-induced increase of iron-staining cells in the substantia nigra. These results suggested that the protective effects of myricetin on the toxicity of 6-OHDA could be attributed to the myricetin-suppressed iron toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.