General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Modelling the dynamics of nonlinear systems poses a much more challenging problem than for their linear counterparts; as such, analytical solutions are rarely achievable and numerical or analytical approximations are often necessary to understand the system's behaviour. While numerical techniques are undoubtedly accurate, it is possible to gain a greater understanding of the processes underpinning the workings of the dynamics. Therefore, it is valuable to investigate the accuracy and practicality of the aforementioned analytical approximation techniques and compare the results with numerical which are known to be accurate. In this paper, the unforced, undamped dynamics (known as backbone curves) of a non-symmetric twomass oscillator will be calculated using the second-order normals forms (SONF), harmonic balance, and multiple scales techniques. The results of these will then be compared to responses found using numerical continuation. Furthermore, the forced responses will be approximated using the SONF and harmonic balance techniques.