Biological and biochemical functions of immunity transcription factor NF-κB in basal metazoans are largely unknown. Herein, we characterize transcription factor NF-κB from the demosponge Amphimedon queenslandica (Aq), in the phylum Porifera. Structurally and phylogenetically, the Aq-NF-κB protein is most similar to NF-κB p100 and p105 among vertebrate proteins, with an Nterminal DNA-binding/dimerization domain, a C-terminal Ankyrin (ANK) repeat domain, and a DNA binding-site profile more similar to human NF-κB proteins than Rel proteins. Aq-NF-κB also resembles the mammalian NF-κB protein p100 in that C-terminal truncation results in translocation of Aq-NF-κB to the nucleus and increases its transcriptional activation activity. Overexpression of a human or sea anemone IκB kinase (IKK) can induce C-terminal processing of Aq-NF-κB in vivo, and this processing requires C-terminal serine residues in Aq-NF-κB. Unlike human NF-κB p100, however, the C-terminal sequences of Aq-NF-κB do not effectively inhibit its DNAbinding activity when expressed in human cells. Tissue of another demosponge, a black encrusting sponge, contains NF-κB site DNAbinding activity and an NF-κB protein that appears mostly processed and in the nucleus of cells. NF-κB DNA-binding activity and processing is increased by treatment of sponge tissue with LPS. By transcriptomic analysis of A. queenslandica we identified likely homologs to many upstream NF-κB pathway components. These results present a functional characterization of the most ancient metazoan NF-κB protein to date, and show that many characteristics of mammalian NF-κB are conserved in sponge NF-κB, but the mechanism by which NF-κB functions and is regulated in the sponge may be somewhat different.