In order to prohibit the shuttle influence of lithium polysulfides in lithium sulfur battery, a kind of graphene oxide (GO) coated γ-MnS@KB-S (GO@MKB-S) composite cathode material was successfully fabricated. First of all, the γ-MnS@KB (MKB) composite powders were prepared via a solvothermal reaction, then a spray drying method was used to obtain GO@MKB-S composites, which displays core/shell nanostructure. SEM, TEM, XRD as well as Raman spectrum are implemented to look into the microstructures and the functions of the 2D nanosheet-like γ-MnS in setting in KB on the battery performance were carefully analyzed. It is demonstrated that electrochemical discharge capacity and rate performance are clearly improved by using GO@MKB-S composites compared to the cathode electrode of the GO coated KB-S (GO@KB-S). With a sulfur loading of 5 mg cm −2 , the cathode electrode of GO@MKB-S shows a considerable discharge capacity of 749.9 mAh g −1 at 0.36 C. Additionally, the Li-S battery cycle retention of GO@MKB-S sample maintains 97.36% after 100 cycles and 78.69% after 200 cycles.