Very limited studies have been done to investigate the algal biotransformation of codeine to its opioid derivatives. On the other hand, microalgae have been recently introduced as potential tools for green synthesis of various organic compounds. In the present work, the capability of biotransformation of codeine by a locally isolate strain of cyanobacterium, Nostoc muscorum, was evaluated. Incubation of the whole cells of Nostoc muscorum with codeine (I) under continuous light photoregime of 60 lmol photons/m 2 s at 25°C for 5 days gave rise to four transformation products. The bioproducts were separated by gas chromatography and identified as 6-acetylcodeine (II), oxycodone (III), norcodeine (IV), morphine (V) and based on their mass spectra. Observed modifications included O-demethylation, N-demethylation, C6-acetylation, C14-hydroxilation, D 7 -reduction, and C6-oxidation. The ability of N. muscorum to convert codeine to oxycodone (III) represents an uncommon pattern of codeine metabolism in microorganisms that may be of industrial importance.