Renewable energy has attracted growing attention due to energy crisis and environmental concern. The renewable power is featured by its intermittent and fluctuating nature, which requires large-scale electrical energy storage devices for dispatch and integration. Among the current energy storage technologies (e.g., pumped hydro, flywheel, compressed air, superconducting magnet, electrochemical systems), electrochemical storage technologies or batteries that reversely convert electrical energy into chemical energy demonstrate extremely great potential in the stationary and transportation applications. Scale determines the device type. Redox flow batteries (RFBs), as one of the large-scale types, are capable of complying with power station. Meanwhile, portable smart electronic devices promote the development of small-scale energy storage systems, such as Li-ion batteries and supercapacitors. With delicate device configuration, materials play critical roles on pursuing advancing performance, in terms of electrode, current collector, and separator. Carbon nanotube (CNT)/polymer composites exhibit promising potentials in the above key entities, which integrate the merits of conductivity, mechanical strength, flexibility, and cost. Therefore, this chapter is devoted to the design and application of carbon nanotube/polymer composites in different kinds of energy storage systems.