The reasonable design of electrode materials for rechargeable batteries plays an important role in promoting the development of renewable energy technology. With the in‐depth understanding of the mechanisms underlying electrode reactions and the rapid development of advanced technology, the performance of batteries has significantly been optimized through the introduction of defect engineering on electrode materials. A large number of coordination unsaturated sites can be exposed by defect construction in electrode materials, which play a crucial role in electrochemical reactions. Herein, recent advances regarding defect engineering in electrode materials for rechargeable batteries are systematically summarized, with a special focus on the application of metal‐ion batteries, lithium–sulfur batteries, and metal–air batteries. The defects can not only effectively promote ion diffusion and charge transfer but also provide more storage/adsorption/active sites for guest ions and intermediate species, thus improving the performance of batteries. Moreover, the existing challenges and future development prospects are forecast, and the electrode materials are further optimized through defect engineering to promote the development of the battery industry.
Manipulating a quantum state via electrostatic gating has been of great importance for many model systems in nanoelectronics. Until now, however, controlling the electron spins or, more specifically, the magnetism of a system by electric-field tuning has proven challenging. Recently, atomically thin magnetic semiconductors have attracted significant attention due to their emerging new physical phenomena. However, many issues are yet to be resolved to convincingly demonstrate gate-controllable magnetism in these two-dimensional materials. Here, we show that, via electrostatic gating, a strong field effect can be observed in devices based on few-layered ferromagnetic semiconducting CrGeTe. At different gate doping, micro-area Kerr measurements in the studied devices demonstrate bipolar tunable magnetization loops below the Curie temperature, which is tentatively attributed to the moment rebalance in the spin-polarized band structure. Our findings of electric-field-controlled magnetism in van der Waals magnets show possibilities for potential applications in new-generation magnetic memory storage, sensors and spintronics.
Demand for energy in day to day life is increasing exponentially. However, existing energy storage technologies like lithium ion batteries cannot stand alone to fulfill future needs. In this regard, potassium ion batteries (KIBs) that utilize K ions in their charge storage mechanism have attracted considerable attention due to their unique properties and are therefore established as one of the future battery systems of interest among the scientific community. Nevertheless, the development and identification of appropriate electrode materials is very essential for practical applications. This review features the current development in KIBs electrode and electrolyte materials, the present challenges facing this technology (in the commercial aspect), and future aspects to develop fully functional KIBs. The potassium storage mechanisms, evolution of the KIBs, and the advantages and disadvantages of each category of materials are included. Additionally, various approaches to enhance the electrochemical performances of KIBs are also discussed. This review is not only an amalgamation of different viewpoints in literature, but also contains concise perspectives and strategies. Moreover, the potential emergence of a novel class of K‐based dual ion batteries is also analyzed for the first time.
Iron phthalocyanine (FePc) is a promising non-precious catalyst for the oxygen reduction reaction (ORR). Unfortunately, FePc with plane-symmetric FeN 4 site usually exhibits an unsatisfactory ORR activity due to its poor O 2 adsorption and activation. Here, we report an axial Fe-O coordination induced electronic localization strategy to improve its O 2 adsorption, activation and thus the ORR performance. Theoretical calculations indicate that the Fe-O coordination evokes the electronic localization among the axial direction of O-FeN 4 sites to enhance O 2 adsorption and activation. To realize this speculation, FePc is coordinated with an oxidized carbon. Synchrotron X-ray absorption and Mössbauer spectra validate Fe-O coordination between FePc and carbon. The obtained catalyst exhibits fast kinetics for O 2 adsorption and activation with an ultralow Tafel slope of 27.5 mV dec −1 and a remarkable half-wave potential of 0.90 V. This work offers a new strategy to regulate catalytic sites for better performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.