The ever‐increasing demand of lithium‐ion batteries (LIBs) caused by the rapid development of various electronics and electric vehicles will be hindered by the limited lithium resource. Thus sodium‐ion batteries (SIBs) have been considered as a promising potential alternative for LIBs owing to the abundant sodium resource and similar electrochemical performances. In recent years, significant achievements regarding anode materials which restricted the development of SIBs in the past decades have been attained. Significantly, the sodium storage feasibility of carbon materials with abundant resource, low cost, nontoxicity and high safety has been confirmed, and extensive investigation have demonstrated that the carbonaceous materials can become promising electrode candidates for SIBs. In this review, the recent progress of the sodium storage performances of carbonaceous materials, including graphite, amorphous carbon, heteroatom‐doped carbon, and biomass derived carbon, are presented and the related sodium storage mechanism is also summarized. Additionally, the critical issues, challenges and perspectives are provided to further understand the carbonaceous anode materials.
Aqueous zinc‐ion batteries have rapidly developed recently as promising energy storage devices in large‐scale energy storage systems owing to their low cost and high safety. Research on suppressing zinc dendrite growth has meanwhile attracted widespread attention to improve the lifespan and reversibility of batteries. Herein, design methods for dendrite‐free zinc anodes and their internal mechanisms are reviewed from the perspective of optimizing the host–zinc interface and the zinc–electrolyte interface. Furthermore, a design strategy is proposed to homogenize zinc deposition by regulating the interfacial electric field and ion distribution during zinc nucleation and growth. This Minireview can offer potential directions for the rational design of dendrite‐free zinc anodes employed in aqueous zinc‐ion batteries.
A new methodology for the synthesis of carbon quantum dots (CQDs) for large production is proposed. The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries.
Rechargeable aqueous zinc‐ion batteries have been considered as a promising candidate for next‐generation batteries. However, the formation of zinc dendrites are the most severe problems limiting their practical applications. To develop stable zinc metal anodes, a synergistic method is presented that combines the Cu‐Zn solid solution interface on a copper mesh skeleton with good zinc affinity and a polyacrylamide electrolyte additive to modify the zinc anode, which can greatly reduce the overpotential of the zinc nucleation and increase the stability of zinc deposition. The as‐prepared zinc anodes show a dendrite‐free plating/stripping behavior over a wide range of current densities. The symmetric cell using this dendrite‐free anode can be cycled for more than 280 h with a very low voltage hysteresis (93.1 mV) at a discharge depth of 80 %. The high capacity retention and low polarization are also realized in Zn/MnO2 full cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.