Cu(2-x)S (x = 1, 0.2, 0.03) nanocrystals were synthesized with three different chemical methods: sonoelectrochemical, hydrothermal, and solventless thermolysis methods in order to compare their common optical and structural properties. The compositions of the Cu(2-x)S nanocrystals were varied from CuS (covellite) to Cu(1.97)S (djurleite) through adjusting the reduction potential in the sonoelectrochemical method, adjusting the pH value in the hydrothermal method and by choosing different precursor pretreatments in the solventless thermolysis approach, respectively. The crystallinity and morphology of the products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), which shows that most of them might be of pure stoichiometries but some of them are mixtures. The obtained XRDs were studied in comparison to the XRD patterns of previously reported Cu(2-x)S. We found consistently that under ambient conditions the copper deficient Cu(1.97)S (djurleite) is more stable than Cu(2)S (chalcocite). Corroborated by recent computational studies by Lambrecht et al. and experimental work by Alivisatos et al. This may be the reason behind the traditionally known instability of the bulk Cu(2)S/CdS interface. Both Cu(2)S and the copper-deficient Cu(1.97)S have very similar but distinguishable electronic and crystal structure. The optical properties of these Cu(2-x)S NCs were characterized by UV-vis spectroscopy and NIR. All presented Cu(2-x)S NCs show a blue shift in the band gap absorption compared to bulk Cu(2-x)S. Moreover the spectra of these Cu(2-x)S NCs indicate direct band gap character based on their oscillator strengths, different from previously reported experimental results. The NIR spectra of these Cu(2-x)S NCs show a carrier concentration dependent plasmonic absorption.
The ever‐increasing demand of lithium‐ion batteries (LIBs) caused by the rapid development of various electronics and electric vehicles will be hindered by the limited lithium resource. Thus sodium‐ion batteries (SIBs) have been considered as a promising potential alternative for LIBs owing to the abundant sodium resource and similar electrochemical performances. In recent years, significant achievements regarding anode materials which restricted the development of SIBs in the past decades have been attained. Significantly, the sodium storage feasibility of carbon materials with abundant resource, low cost, nontoxicity and high safety has been confirmed, and extensive investigation have demonstrated that the carbonaceous materials can become promising electrode candidates for SIBs. In this review, the recent progress of the sodium storage performances of carbonaceous materials, including graphite, amorphous carbon, heteroatom‐doped carbon, and biomass derived carbon, are presented and the related sodium storage mechanism is also summarized. Additionally, the critical issues, challenges and perspectives are provided to further understand the carbonaceous anode materials.
An optimized and general synthetic strategy based on in-situ iodine modifying of polymeric graphitic carbon nitride is discussed. The as-prepared iodine functionalized g-CN shows enhanced electronic and optical properties, as well as increased photocatalytic activities in an assay of hydrogen evolution.
All-inorganic and lead-free cesium tin halides (CsSnX3, X=Cl, Br, I) are highly desirable for substituting the organolead halide perovskite solar cells. However, the poor stability of CsSnX3 perovskites has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. In this paper, a two-step sequential deposition method is developed to grow high-quality B-γ-CsSnI3 thin films and their unique phase change in atmosphere is explored in detail. We find the spontaneous oxidative conversion from unstable B-γ-CsSnI3 to air-stable Cs2SnI6 in air. Allowing the phase conversion of the CsSnI3 film to evolve in ambient air it gives the semiconducting perovskite Cs2SnI6 with a bandgap of 1.48 eV and high absorption coefficient (over 10 5 cm-1 from 1.7 eV). More importantly, the Cs2SnI6 film, for the first time, is adopted as a light absorber layer for a lead-free perovskite solar cell and a preliminary estimate of the power conversion efficiency (PCE) about 1% with open-circuit voltage of 0.51 V and short-circuit current of 5.41 mA/cm 2 is realized by optimizing the perovskite absorber thickness. According to the bandgap and the Shockley-Queisser limit, such inorganic perovskite solar cell with higher efficiency and pronounced stability can be expected by material quality improvement and device engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.