Large amounts of data in storage systems is cold, i.e., Written Once and Read Occasionally (WORO). The rapid growth of massive-scale archival and historical data increases the demand for petabyte-scale cheap storage for such cold data. A Cold Storage Device (CSD) is a disk-based storage system which is designed to trade off performance for cost and power efficiency. Inevitably, the design restrictions used in CSD's results in performance limitations. These limitations are not a concern for WORO workloads, however, the very low price/performance characteristics of CSDs makes them interesting for other applications, e.g., batch processes, too. Applications, however, can be very slow on CSD's if they do not take their characteristics into account. In this paper we design two strategies for data partitioning in CSDs-a crucial operation in many batch analytics tasks like hash-join, near-duplicate detection, and data localization. We show that our strategies can efficiently use CSDs for batch processing of terabyte-scale data by accelerating data partitioning by 3.5x in our experiments.