2005
DOI: 10.1007/11563983_7
|View full text |Cite
|
Sign up to set email alerts
|

Named Entity Recognition for the Indonesian Language: Combining Contextual, Morphological and Part-of-Speech Features into a Knowledge Engineering Approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
11
0
6

Year Published

2013
2013
2018
2018

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 28 publications
(22 citation statements)
references
References 7 publications
0
11
0
6
Order By: Relevance
“…Sebagai contoh, aplikasi Arabic Named Entity Recognition (NERA) dibina khusus bagi domain jenayah dalam bahasa Arab (Asharef, 2012). Selain itu, penyelidikan NER turut giat dilakukan ke atas bahasa Indonesia, Melayu dan Iban Budi, Bressan & Wahyudi, 2005;Fong, Ranaivo-Malançon & Wee, 2011, Shahrul Azman et al, 2018. Namun, buat masa ini masih belum ada lagi penyelidikan yang dibina khusus bagi mengenalpasti jenis NER dalam domain jenayah bahasa Melayu.…”
Section: Latar Belakang Kajianunclassified
“…Sebagai contoh, aplikasi Arabic Named Entity Recognition (NERA) dibina khusus bagi domain jenayah dalam bahasa Arab (Asharef, 2012). Selain itu, penyelidikan NER turut giat dilakukan ke atas bahasa Indonesia, Melayu dan Iban Budi, Bressan & Wahyudi, 2005;Fong, Ranaivo-Malançon & Wee, 2011, Shahrul Azman et al, 2018. Namun, buat masa ini masih belum ada lagi penyelidikan yang dibina khusus bagi mengenalpasti jenis NER dalam domain jenayah bahasa Melayu.…”
Section: Latar Belakang Kajianunclassified
“…Association rules aim to extract interesting correlations, frequent patterns, associations or casual structures among sets of items in the given databases. Association rules mining has wide applications [35][36][37][38] in the areas of medical diagnosis, web caching, query expansion in information retrieval, homeland security, inventory control, market and risk management, telecommunication networks and so on.…”
Section: A Association Rules Miningmentioning
confidence: 99%
“…However, research on this area for Indonesian, such as spelling checker 2,3 , are very few. Researchers who work on this language are still struggling to develop language resources like name entity recognizers (NER), annotated corpora, morphological analyzers, or parsers 4,5,6,7,8 to explore more sophisticated methods that have been applied to other languages. The limitations are not only on the existence of mature language tools but unfortunately, also on the availability of the annotated language data.…”
Section: Introductionmentioning
confidence: 99%