Guanosine (GU) is a purine nucleoside that has different biological applications. This study aimed to synthesize, characterize, and enhance the biological activities of GU through its covalently grafting on polyvinyl alcohol (PVA), chitosan (CS), and cellulose (CL). In this regard, the conjugation was constructed by different linkers such as chloroacetyl chloride, 2-bromopropionyl bromide, and epichlorohydrin (EPCH). The resulted novel conjugates were characterized by FT-IR, 1H-NMR, GPC, and TGA techniques. FT-IR spectra revealed the main characteristic groups, O–H, N–H, C=O and C=N of GU moieties. Furthermore, 1H-NMR spectra showed the aromatic C–H, O–H, and N–H protons of the grafted GU moieties. Two decomposition stages of grated polymers with high thermal stability are illustrated by TGA. GU showed no antifungal activity against Aspergillus fumigatus and Candida albicans. However, its conjugates: P-1A, P-1B, P-2A, P-2B, P-3A, and P-3B displayed significant antifungal effect with inhibitory zones in the range 8–11 mm. As compared to GU group, most of GU-polymer conjugates showed significant in vivo antitumor activity against EAC-bearing mice via the reduction in total tumor volume. In summary, these conjugates are biologically active macromolecules and may act as candidate carrier systems for other applications such as drug delivery.