The magnetoresistance of films of manganese-doped colloidal quantum dots of CdSe, ZnO, HgS, and ZnTe is investigated. At low concentration of manganese ions (1% or less), the hyperfine splitting of the Mn 2+ electron spin resonance is resolved and similar to that of the bulk doped materials, indicating successful doping into the nanocrystals. At high Mn concentration (∼10%), the hyperfine splitting disappears because of interaction between the Mn 2+ ions. Thin films of Mn:CdSe, Mn:ZnO, and Mn:HgS quantum dots are charged negative by applying an electrochemical potential, and the magnetoresistance is measured down to 2 K and up to 9 T. At low charging level, the magnetoresistance of thin films is positive, exhibits little effect of the manganese dopant, and is instead consistent with predictions from the variable range hopping model and the squeezing of the wave function of the quantum dots. At high charging level, the magnetoresistance becomes linear both for Mn:CdSe and Mn:ZnO, and this is not explained. At high Mn doping and low temperature, the positive magnetoresistance is greatly increased at low fields. This is proposed to be a signature of electron-magnetic polarons on the transport properties of the quantum dot films.