Highly oriented poly crystalline graphite (HOPG), boron-doped diamond (BDD), nanocrystalline diamond (NCD), ultra-nano-crystalline diamond (uNCD), fullerenes C60 and C70 and Diamond Like Carbon (DLC) surfaces are exposed to low pressure hydrogen plasma in a 13.56 MHz plasma reactor. Relative yields of surface produced Hions due to bombardment of positive ions from the plasma are measured by an energy analyzer cum quadrupole mass spectrometer. Irrespective of plasma conditions (0.2 and 2 Pa), HOPG surfaces show the highest yield at room temperature (RT), while at high temperature (HT), the highest yield (~ 5 times compared to HOPG surface at room temperature) is observed on BDD surfaces. The shapes of ion distribution functions (IDFs) are compared at RT and HT to demonstrate the mechanism of ion generation at the surface. Raman spectroscopy analyses of the plasma exposed samples reveal surface modifications influencing Hproduction yields, while further analyses strongly suggest that the hydrogen content of the material and the sp3/sp2 ratio are the key parameters in driving surface ionization efficiency of carbon materials under the chosen plasma conditions.