Diamond in the allotrope form consists of carbon atoms arranged in a cubic crystal structure covalently bonded in sp 3 hybridization. Diamond has emerged as a very promising material for various biomedical applications due to its excellent mechanical properties (hardness, low friction coefficient, good adhesiveness to the underlying substrate, good interlayer cohesion), optical properties (the ability to emit intrinsic luminescence), electrical properties (good insulator in the pristine state and semiconductor after doping), chemical resistance (low chemical reactivity and resistance to wet etching) and biocompatibility (little if any toxicity and immunogenicity). For advanced biomedical applications, diamond is promising particularly in its nanostructured forms, namely nanoparticles, nanostructured diamond films and composite scaffolds in which diamond nanoparticles are dispersed in a matrix (mainly nanodiamond-loaded nanofibrous scaffolds). This chapter summarizes both our long-term experience and that of other research groups in studies focusing on the interaction of cells (particularly bone-derived cells) with nanodiamonds as nanoparticles, thin films and composites with synthetic polymers. Their potential applications in bioimaging, biosensing, drug delivery, biomaterial coating and tissue engineering are also reviewed.