The results of the present study compare favourably with previous reports on the pharmacodynamics of omeprazole and the clinical outcomes of trials reporting response to oral omeprazole therapy.
We report on the fabrication and characterization of dry hybrid lipid-silica nanoparticle based microcapsules with an internal porous matrix structure for encapsulation of poorly soluble drugs, and their delivery properties (in vitro release and lipolysis and in vivo pharmacokinetics demonstrated for indomethacin as a model drug). Microcapsules were prepared by spray drying of Pickering o/w emulsions containing either negatively or positively charged lipophilic surfactant in the oil phase and hydrophilic silica nanoparticles in the aqueous phase. Effective microcapsule formation is critically dependent on the interfacial structure of the nanoparticle containing emulsions, which are in turn controlled by the surfactant charge and the nanoparticle to lipid ratio. Microcapsules (containing 50-85% oil) can be prepared with 10 times fewer silica nanoparticles when a droplet-nanoparticle charge neutralizing mechanism is operative. Cross-sectional SEM imaging has confirmed the internal porous matrix structure and identified pore sizes in the range 20-100 nm, which is in agreement with BET average pore diameters determined from gas adsorption experiments. Differential scanning calorimetry and X-ray diffraction analysis have confirmed that the model drug indomethacin remains in a noncrystalline form during storage under accelerated conditions (40 degrees C, 75% RH). Dissolution studies revealed a 2-5-fold increase in dissolution efficiency and significantly reduced the time taken to achieve 50% of drug dissolution values (> or =2- or 10-fold) for indomethacin formulated as microcapsules in comparison to o/w submicron emulsions and pure drug, respectively. Orally dosed in vivo studies in rats have confirmed superior pharmacokinetics for the microcapsules. Specifically, the fasted state absolute bioavailability (F) was statistically higher (93.07 +/- 5.09%) (p < 0.05) than for aqueous suspension (53.54 +/- 2.91%) and o/w submicron emulsion (64.57 +/- 2.11%). The microcapsules also showed the highest maximum plasma concentration (C(max)) among the investigated formulations (p < 0.05). In vitro lipolysis showed statistically higher (p < 0.05) fasted digestion (75.8% after 5 min) and drug solubilization (98% after 5 min) in digestive products for microcapsules than o/w emulsions. The hybrid lipid-silica microcapsules improve oral absorption by enhancing lipolysis and drug dissolution.
Targeting drug carrier systems based on graphene oxide (GO) are of great interest, since it can selectively deliver anticancer drugs to tumor cells, and enhance therapeutic activities with minimized side effects. However, direct grafting target molecules on GO usually results in aggregation of physiological fluid, limiting its biomedical applications. Here, we propose a new strategy to construct targeting GO drug carrier using folic acid grafted bovine serum albumin (FA-BSA) as both the stabilizer and targeting agent. FA-BSA decorated graphene oxide-based nanocomposite (FA-BSA/GO) was fabricated by the physical adsorption of FA-BSA on GO, which was developed as a targeting drug delivery carrier. FA-BSA/GO as the drug carrier was associated with anticancer drug doxorubicin (DOX) through π-π and hydrogen-bond interactions, resulting in high drug loading (up to 437.43μgDOX/mgFA-BSA/GO). FA-BSA/GO/DOX systems demonstrated pH responsive and sustained drug release. The hemolysis ratio of FA-BSA/GO was less than 5%, demonstrating its safety as drug carrier for intravenous injection. Moreover, in vitro cell cytotoxicity and cellular uptake analysis suggested that the constructed FA-BSA/GO/DOX nanohybrids could significantly enhance the anticancer activity. The present work has confirmed the potential for fabrication of highly stable and dispersible GO-based targeting delivery systems for efficient cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.