The application of nanotechnology to medicine termed as 'nanomedicine' is recognised as an emerging field with enormous potential for developing new therapeutic concepts. A range of nanoscale materials have been explored in the last few years for drug delivery to address the problems associated with conventional drug therapies such as limited drug solubility, poor biodistribution, lack of selectivity and unfavourable pharmacokinetics. Among them, nanoporous materials with ordered and controlled pore structures, high surface area and pore volume, attracted great attention, particularly for implantable drug delivery systems. This review presents the recent progress in this field focused on electrochemically engineered nanopores/nanotube materials such as nanoporous alumina and nanotubular titania. The basic concept of fabrication of these unique materials using a self-ordering process, description of their structural properties, biocompatibility and recent applications for therapeutic implants is presented.
Diatom silica microcapsules prepared by purification of diatomaceous earth (DE) were functionalised by dopamine modified iron-oxide nanoparticles, in order to introduce diatoms with magnetic properties. The application of magnetised diatoms as magnetically guided drug delivery microcarriers has been demonstrated.
In this communication, we present a novel approach for control of drug release from porous materials. The method is based on deposition of a plasma polymer layer with controlled thickness which reduces a pore diameter and, hence, defines the rate of drug release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.