The Brain-Machine Interface (BMI), a crucial conduit between the human brain and computers, holds transformative potential for various applications in neuroscience. This manuscript explores the role of micro-engineered neuronal networks (MNNs) in advancing BMI technologies and their therapeutic applications. As the interdisciplinary collaboration intensifies, the need for innovative and user-friendly BMI technologies becomes paramount. A comprehensive literature review sourced from reputable databases (PubMed Central, Medline, EBSCOhost, Google Scholar) aided in the foundation of the manuscript, emphasizing the pivotal role of MNNs. This study aims to synthesize and analyse the diverse facets of MNNs in the context of BMI technologies, contributing insights into neural processes, technological advancements, therapeutic potentials, and ethical considerations surrounding BMIs. MNNs, exemplified by dual-mode neural microelectrodes, offer a controlled platform for understanding complex neural processes. Through case studies, we showcase the pivotal role of MNNs in BMI innovation, addressing challenges, and paving the way for therapeutic applications. The integration of MNNs with BMI technologies marks a revolutionary stride in neuroscience, refining brain-computer interactions and offering therapeutic avenues for neurological disorders. Challenges, ethical considerations, and future trends in BMI research necessitate a balanced approach, leveraging interdisciplinary collaboration to ensure responsible and ethical advancements. Embracing the potential of MNNs is paramount for the betterment of individuals with neurological conditions and the broader community.