A factor closely associated with renal disease status in clinical diagnosis is abnormal human serum albumin (HSA) concentration levels in human body fluids urine, serum, etc. The surface stress biosensor was developed as a new type of biosensor to detect protein molecule concentration and has a wide range of clinical applications. However, further sensitivity improvement is required to achieve higher detection performance. Herein, MXene/PDMS/ Fe 3 O 4 /PDMS of the multilayer heterogeneous membrane biosensor (MHBios) based on the coupling of the magnetic field, electric field, and surface stress field was successfully developed to achieve high sensitivity HSA detection through magnetic sensitization. The modified antibody specifically binds to HSA at the AuNP layer, allowing the biosensor to convert the surface stress caused by PDMS film deformation into an electrical signal. When the biosensor was exposed to a uniform magnetic field, the conductive path of the conductive layer was reshaped further as the magnetic force amplified the deformation of the PDMS film, enhancing the conversion of biological signals to electrical signals. The results exhibited that the detection limit (LOD) of the MHBios was 78 ng/mL when HSA concentration was 0−50 μg/ mL, which was markedly lower than the minimum diagnostic limit of microalbuminuria. Furthermore, the MHBios detected HSA in actual samples, confirming the potential for early disease screening.