The hydrogenation of methyl formate to methanol is considered one of the most effective methods for recycling methyl formate products. We recently developed a highly efficient and cost-effective Cu-SiO2 catalyst using the ammonia-evaporation (AE) method. The Cu-SiO2-AE catalyst demonstrated superior performance, achieving a methyl formate conversion of 94.2% and a methanol selectivity of 99.9% in the liquid product. The catalyst also displayed excellent stability over a durability test of 250 h. Compared to the commonly used Cu-Cr catalyst in the industry, the Cu-SiO2-AE catalyst exhibited higher conversion of methyl formate and methanol yield under the same reaction conditions. Characterization results revealed a significant presence of Si-OH groups in the Cu-SiO2-AE catalyst. These groups enhanced the hydrogen spillover effect and improved hydrogenation efficiency by preventing sintering during the reaction to stabilize the Cu species. The strategy employed in this study is applicable to the rational design of highly efficient catalysts for industrial applications.