Background: The development of non-small cell lung cancer (NSCLC) is very rapid, and the effect of its treatment is often closely related to the diagnosis time of the disease. Therefore, simple and convenient tumor biomarkers are helpful for the timely diagnosis and prevention of NSCLC.Methods: Through univariate and multivariate Cox regression analyses, SMOX was determined as an independent prognostic factor of GSE42127, GSE41271, GSE68465, and TCGA datasets. Furthermore, western blot, reverse transcription-polymerase chain reaction (RT-PCR), and immunohistochemical analysis were performed to confirm the predictive efficiency of SMOX expression in NSCLC.Results: Patients were divided into high and low expression groups according to the median value of SMOX expression, and Kaplan-Meier curves of multiple datasets indicated that patients with low SMOX expression had a better survival rate. According to the analysis of immune infiltration, the immune microenvironment, and immune checkpoints, SMOX expression of the high and low groups showed differences in immunity in NSCLC. By comparing cancer and adjacent tissues using western blot analysis, RT-PCR and immunohistochemical analysis, we found that SMOX was highly expressed in tumor tissues and had low expression in adjacent tissues. Simultaneously, the Kaplan-Meier curve suggested that among the 155 NSCLC patients, those with low SMOX expression had better survival.Conclusions: SMOX can be used as an effective predictive target for NSCLC.