Background
Nanoceria has recently received much attention, because of its widespread biomedical applications, including antibacterial, antioxidant and anticancer activity, drug/gene delivery systems, anti-diabetic property, and tissue engineering.
Main body
Nanoceria exhibits excellent antibacterial activity against both Gram-positive and Gram-negative bacteria via the generation of reactive oxygen species (ROS). In healthy cells, it acts as an antioxidant by scavenging ROS (at physiological pH). Thus, it protects them, while in cancer cells (under low pH environment) it acts as pro-oxidant by generating ROS and kills them. Nanoceria has also been effectively used as a carrier for targeted drug and gene delivery in vitro and in vivo models. Besides, nanoceria can also act as an antidiabetic agent and confer protection towards diabetes-associated organ pathophysiology via decreasing the ROS level in diabetic subjects. Nanoceria also possesses excellent potential in the field of tissue engineering. In this review, firstly, we have discussed the different methods used for the synthesis of nanoceria as these are very important to control the size, shape and Ce
3+
/Ce
4+
ratio of the particles upon which the physical, chemical, and biological properties depend. Secondly, we have extensively reviewed the different biomedical applications of nanoceria with probable mechanisms based on the literature reports.
Conclusion
The outcome of this review will improve the understanding about the different synthetic procedures and biomedical applications of nanoceria, which should, in turn, lead to the design of novel clinical interventions associated with various health disorders.
Graphical abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of many forms of cancer by stimulating body's own immune system. This therapy not only eradicates tumor cells by inducing strong anti-tumor immune response but also prevent their recurrence. The clinical cancer immunotherapy faces some insurmountable challenges including high immune-mediated toxicity, lack of effective and targeted delivery of cancer antigens to immune cells and off-target side effects. However, nanotechnology offers some solutions to overcome those limitations, and thus can potentiate the efficacy of immunotherapy. This review focuses on the advancement of nanoparticle-mediated delivery of immunostimulating agents for efficient cancer immunotherapy. Here we have outlined the use of the immunostimulatory nanoparticles as a smart carrier for effective delivery of cancer antigens and adjuvants, type of interactions between nanoparticles and the antigen/adjuvant as well as the factors controlling the interaction between nanoparticles and the receptors on antigen presenting cells. Besides, the role of nanoparticles in targeting/activating immune cells and modulating the immunosuppressive tumor microenvironment has also been discussed extensively. Finally, we have summarized some theranostic applications of the immunomodulatory nanomaterials in treating cancers based on the earlier published reports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.