Cancer imaging requires selective high accumulation of contrast agents in the tumor region and correspondingly low uptake in healthy tissues. Here, by making use of a novel synthetic polymer to solubilize single-walled carbon nanotubes (SWNTs), we prepared a well-functionalized SWNT formulation with long blood circulation (half life ~ 30 h) in vivo to achieve ultra-high accumulation of ~30% injected dose (ID)/gram in 4T1 murine breast tumors in Balb/c mice. Functionalization dependent blood circulation and tumor uptake was investigated through comparisons with phospholipid-PEG solubilized SWNTs. For the first time, we performed video-rate imaging of tumors based on the intrinsic fluorescence of SWNTs in the second near infrared (NIR-II, 1.1–1.4 µm) window. We carried out dynamic contrast imaging through principal component analysis (PCA) to immediately pinpoint the tumor within ~20 s post injection. Imaging over time revealed increasing tumor contrast up to 72 h post injection, allowing for its unambiguous identification. 3D reconstruction of the SWNTs distribution based on their stable photoluminescence inside the tumor revealed a high degree of colocalization of SWNTs and blood vessels, suggesting enhanced permeability and retention (EPR) effect as the main cause of high passive tumor uptake of the nanotubes.