This study explores the transformative potential of Pillared InterLayered Clays (PILC) derived from non-conventional aluminum sources as catalytic supports in the synthesis of TiO2/catalysts for the efficient photodegradation of organic pollutants in water. Montmorillonite (Mt) and three alumina-pillared montmorillonite (PILC) synthesized using various aluminum sources, were impregnated with titanium to synthesize TiO2/catalysts. The successful synthesis of these materials was confirmed through several characterization techniques such as X-ray diffraction (XRD), N2 adsorption-desorption at -196 ºC, morphological analysis using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and Energy-Dispersive X-ray Spectrometry (EDX). The photolysis, adsorption, and catalytic behavior of the TiO2/catalysts were studied for the degradation of triclosan (TCS), 2,6-dichlorophenol (2,6-DCP), and bisphenol A (BPA). All synthesized catalysts surpassed the efficacy of commercial anatase, with TiO2/Al-PILC exhibiting superior performance in comparison to TiO2/Mt. Photodegradation was most effective under UV radiation, with TCS demonstrating the highest degradation (approximately 70%). Notably, Al-PILC samples, particularly those synthesized from saline slags, displayed enhanced properties. Among them, TiO2/Al-PILCAE exhibited the highest degradation rates under both UV and visible light, underlining the remarkable potential of saline slags as precursors for Al-PILC synthesis. This study provides valuable insights into the design and development of efficient catalysts for water treatment applications, paving the way for sustainable and effective solutions in the realm of environmental remediation.