Necessary conditions and methodology for fitting pore size distribution curvesThe analysis was conducted for both MICP and adsorption cumulative pore distribution curves. The big question was: is it possible to fit both curves to obtain one pore size distribution curve, covering the whole range of interesting pore radii. Analysis of conducted research showed that curves could only be identical in certain ranges of pore radii. In other words, their relationship is defined, by the flow phenomena in nanopores which depends on pore diameter and shape. Merging of both curves gives additional information about the pore structure of investigated rocks.Key words: Flow of fluids, nanopore space, pore radius distribution curves.
Warunki konieczne i metodologia dopasowywania krzywych rozkładu wielkości porówPrzeanalizowano krzywe kumulacyjne otrzymane z pomiarow porozymetrii rtęciowej oraz z badań adsorpcyjnych. Podstawowym problemem była możliwość połączenia obu krzywych w jedną, obejmującą cały zakres interesują-cych porów. Stwierdzono, że jedynie dla pewnych interwałów obie krzywe mogą mieć identyczny przebieg. Dla innych zakresów, szczególnie dla nanoporów, ich przebieg jest inny i jest sterowny przez inne zjawiska zachodzące przy przepływie płynów przez nanoprzestrzeń porową. Tym niemniej takie próby łączenia obu krzywych dają dodatkową informację o badanych skałach.Słowa kluczowe: przepływ płynów, przestrzeń nanoporowa, krzywe rozkładu promieni porów.Analysis of a fluid flow through shale rock pore space, depends on finding the real value of permeability, as well as estimating the total flux of flowing fluid. One of the most useful and necessary tools in such analysis is pore radius or pore diameter distribution curve. It allows us to apply -for example -net model of pore space [2,12]. Generally two types of analyses give such a data. The first, is the high pressure MICP in which distribution of pore throats curve, is obtained directly from capillary pressure curve and Washburne's formula [22]. The second is the adsorption investigation. For a geological sample, the pore distributions are calculated mainly from Halsey equation [6,17]. Both methods are based on the capillary tube model. The first one covers the range of pores from several hundred micrometers to 5 nanometers, the second one from 300 to 2 nanometers.A combination of MICP and N 2 adsorption provides complementary information about entire pore structure. However, a direct comparison of the pore volumes from those two techniques might be tricky because of difference in basic principles. The intrusion of mercury is controlled by the pore throats, while the nitrogen adsorption phenomenon is controlled by the pore body.Moreover, special attention should to be paid to MICP data analysis of shale rocks. In such samples, the course of the cumulative curves may reflect the changes in sample caused by application of high pressure (up to 414 MPa), which may significantly affect the data by compressing the rocks structure, breaking the particles and opening closed p...