Oxide dispersion strengthened ferritic steel is considered an important structural material in fusion reactors due to its excellent resistance to radiation and oxidation. Fine and dispersed oxides can be introduced into the matrix via the powder metallurgy process. In the present study, large grain sizes and prior particle boundaries (PPBs) formed in the FeCrAlY alloy prepared via powder metallurgy. Thermo-mechanical treatment was conducted on the FeCrAlY alloy. Results showed that microstructure was optimized: the average grain diameter decreased, the PPBs disappeared, and the distribution of oxides dispersed. Both ultimate tensile strength and elongation improved, especially the average elongation increased from 0.5% to 23%.