The human body is permanently exposed to its environment and thus to viruses and other pathogens, which require a flexible response and defense. Alongside to the innate immune system, the adaptive immune system provides highly specialized protection against these threats. The major histocompatibility complex class I (MHC I) antigen presentation system is a cornerstone of the adaptive immune system and a major constituent of cellular immunity. Pathogens such as viruses that invade a cell will leave traces in the form of proteins and peptides which are degraded and loaded onto MHC I molecules. MHC I peptide loading is performed by peptide loading complex (PLC) in the membrane of the endoplasmic reticulum as part of a multifaceted and comprehensive quality control machinery. Monitored by multiple layers of quality assurance, the MHC I molecules consequently display the immune status of the cell on its surface. In this context, the captured fragment of the virus serves as a call for help issued by the cell, alerting the adaptive immune system to the infection to mount an appropriate immune response. The three-dimensional structure as well as the mechanistic details of parts of this complex machinery were characterized in the context of this dissertation. Among other tools, light-modulable nanotools were developed in this thesis, which permit external regulation of cellular processes in temporal and spatial resolution. Furthermore, methods and model systems for the biochemical characterization of cellular signaling cascades, proteins, as well as entire cell organelles were developed, which are likely to influence the field of cellular immunity and protein biochemistry in the future. This cumulative work comprises a total of six publications whose scientific key advances will be briefly outlined in this abstract. In the introduction, the scientific background as well as the current state of research and methodological background knowledge are conveyed. The results section condenses the main aspects of the publications and links them to each other. Further details can be retrieved from the attached original publications. In “Semisynthetic viral inhibitor for light control of the MHC I peptide loading complex, Winter, Domnick et al., Angew Chem Int Ed 2022” a photocleavable viral inhibitor of the peptide loading complex was produced by semi-synthesis. This nanotool was shown to be suitable for both purifying the PLC from human Raji cells as well as reactivating it in a light-controlled manner. Thus, this tool establishes the isolation of a fully intact and functional peptide loading complex for biochemical characterization. In addition, a novel flow cytometric analysis pipeline for microsomes was developed, allowing cellular vesicles to be characterized with single organelle resolution, similar to cells. In “Molecular basis of MHC I quality control in the peptide loading complex, Domnick, Winter et al., Nat Commun 2022” the peptide loading complex was reconstituted into large nanodiscs, and a cryo-EM structural model of the editing module at 3.7 Å resolution was generated. By combining the structural model with in vitro glycan editing assays, an allosteric coupling between peptide-MHC I assembly and glycan processing was revealed, extending the known model of MHC I loading and dissociation from the PLC. These mechanisms provide a prototypical example for endoplasmic reticulum quality control. In a related context, in “Structure of an MHC I–tapasin–ERp57 editing complex defines chaperone promiscuity, Müller, Winter et al., Nat Commun 2022” a recombinantly assembled editing module comprised of MHC I-tapasin-ERp57 was crystallized for X-ray structural biology. The resulting crystal structure at a resolution of 2.7 Å permitted the precise identification of characteristic features of the editing module and particularly of the peptide proofreading mechanism of tapasin. This study provided pivotal insights into the tapasin-mediated peptide editing of different MHC I allomorphs as well as similarities to TAPBPR-based MHC I peptide proofreading. In “TAPBPR is necessary and sufficient for UGGT1-mediated quality control of MHC I, Sagert, Winter et al. (in preparation)” novel insights concerning the peptide proofreader TAPBPR and its close interplay with the folding sensor and glucosyltransferase UGGT1 were obtained. It was shown that TAPBPR is an integral part of the second level of endoplasmic quality control and is indispensable for effective MHC I coordination by UGGT1. In “Light-guided intrabodies for on-demand in situ target recognition in human cells, Joest, Winter et al., Chem Sci 2021” intracellular nanobodies were equipped with a photocaged target recognition domain by genetic code expansion via amber suppression. These intrabodies, acting as high-affinity binding partners endowed with a fluorophore, could be used in a light-triggered approach to instantaneously visualize their target molecule...